

Impact of irisin, an exercise mimetic, in renal lipotoxicity

health

Morgane Decarnoncle^{1,2}, Louis Maréchal¹, Louise Pierre¹, Hélène Marlier¹, Louis François¹, Dorian Pruvost¹, Thomas Zwakhals¹, Florian Juszczak¹, Alexandra Tassin², Anne-Emilie Declèves¹

¹Laboratory of Metabolic and Molecular Biochemistry, ² Laboratory of Respiratory Physiology and Pathophysiology Rehabilitation, Faculty of Medicine and Pharmacy, Health institute, University of Mons, Belgium

Exercise training improves chronic kidney disease induced by obesity

The growing increase of obesity intensifies the incidence of chronic kidney disease (CKD) across the world. Our group demonstrated that the AMP-activated protein kinase (AMPK) dysregulation is a key driver of the obesity-CKD induced progression.

Decleves AE et al., 2011 Decleves AE et al., 2014

BACKGROUND

BODY WEIGHT --- LFD → LFDT weight (g) → HFD
→ HFDT Weeks

Cortex renal photomicrography colored with Periodic acid Shiff. PTC for Proximal Tubular Cells

PTC lipid inclusion

Untrained

Trained

Organ Cross Talk

Organs communicate each other via organokine secretion. We hypothesize that myokines produced during exercise are involved in the beneficial effects of EET on renal impairments.

Irisin

Among myokines, irisin has been recently highlighted to have beneficial effect on kidney.

Proximal tubular cell

Materials and method

One way ANOVA followed by Newman-Keuls. * $p \le 0.05$ versus LFD, # $p \le 0.05$ versus HFD. n = 6-8 in each group.

Primary proximal tubular epithelial cells (mPTEC) isolated from mouse kidneys are exposed to palmitic acid (PA) or its vehicle, with or without irisin treatment

LIPID DROPLET ACCUMULATION

Irisin 1µg/ml 24h **Lipid droplets Nucleus**

BSA PA BSAI PAI

One-way ANOVA p<0.05 Post-test Tukey, * Vs BSA, \$ Vs PA Mean ± SEM, n=4

BSA PA BSAI PAI

FATTY ACID TRANSPORTER

FACTOR Less *Ppary* expression with irisin Ppar gamma BSA PA BSAI PAI One-way ANOVA p<0.05 Post test Tukey, * Vs BSA, p=0.0965 entre PA et PAI

Mean ± SEM, n≥8

Cd36 TRANSCRIPTION

Overall, our findings suggest that irisin mitigates renal lipotoxicity, possibly by modulating PPAR-gamma/CD36 signaling.

CONCLUSION

LIPOGENESIS

Srebp1 FA synthesis # BSA PA BSAI PAI Fas Acc

One-way ANOVA p<0,005 Post-test Tukey, * Vs BSA Mean ± SEM, n≥4

No lipogenesis and βoxidation

irisin

Cpt1 2.0-PA BSAI PAI One-way ANOVA p<0,01 Post-test Tukey, * Vs BSA Mean ± SEM, n=10 gene expression variation with

β OXIDATION

PROSPECTS

- Elucidate the mechanisms of Irisin/ PPAR-gamma/CD36 signaling
- Analyze AMPK activation
- Invertigate mitochondrial function